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We introduce a numerical method for fully nonlinear, three-dimensional water
surface waves, described by standard potential theory. The method is based on a
transformation of the dynamic water volume onto a fixed domain. Regridding at
each time step is thereby avoided. The transformation introduces an elliptic bound-
ary value problem which is solved by a preconditioned conjugate gradient method.
Moreover, a simple domain imbedding precedure is introduced to solve problems
with an obstacle in the water volume. Numerical experiments are presented and
they show nice convergence properties of the iterative solver as well as conver-
gence of the entire solution towards a reference solution computed by another
scheme. (© 1998 Academic Press

1. INTRODUCTION

The purpose of this paper is to introduce a new numerical method for solving ft
nonlinear free surface waves modelled by standard potential theory. One major applic:
area of this method is typically the calculation of wave forces on marine installations.

These types of wave problems have traditionally been addressed by linear theol
second order perturbation theory to estimate weak nonlinear effects. The governing Laj
equation has almost exclusively been solved by boundary element methods (BEM), us
with piecewise constant elements. Important contributions to solving the fully nonlin
wave problems using BEM are briefly reviewed by Ferrant [11]. In linear or second or
theory one can derive relevant Green functions for the integral equation such that
only necessary to discretize the surface of the marine installations, and at most a sn
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part of the mathematically flat water surface in the vicinity of the installations. Hence,
advantage of integral equations and BEM over solving the Laplace equation directly ir
water volume is obvious. Nevertheless, in the fully nonlinear case the integral eque
approach requires discretization of the complete, moving boundary of the water volu
In this case we will later in this paper give heuristic arguments which show that fir
element or finite difference discretization of the Laplace equation in the water volume 1
be asymptotically more efficient than BEM. New preconditioning techniques for Laple
equation solvers are the main reason for this result.

Solution of the Laplace equation arising in the model of fully nonlinear water wa\
around marine installations by the finite element method (FEM) has received surprisil
little attention in the literature. To our knowledge, Eatock Taylor [21] is the pioneer
applying finite element methods in this respect. Equally novel is the spline method of E
Mehlum described in [17] in which smooth spline functions in connection with spect
expansion are used to solve the Laplace equation.

The method presented here is based on a finite element discretization of the La
equation in the water volume, whereas the free surface boundary conditions are discre
by standard finite difference techniques. The choice of finite elements instead of, e.g., 1
differences for the Laplace equation is mainly motivated by the inherent flexibility of fin
elements with respect to adaptive grids and higher order approximations, fhanigh — p
extensions of FEM, although these extensions will not be discussed herein. Use of 1
elements to treat complicated geometries, due to the bottom topography and marine ins
tions, is of less importance since we will present a domain imbedding approach that hai
the geometry aspect of the problem without the need for sophisticated gridding technic
The possibly complicated geometry of the free surface normally requires regridding of
water volume at each time step, but we avoid this by a time dependent mapping of the v
volume onto a simple stationary solution domain for the Laplace equation.

Most of the computational effort in this numerical method is devoted to the solution
the Laplace equation. We use efficient preconditioners in combination with the conjug
gradient (CG) method to achieve an optimal solution method, that is, the total cost
simulation is proportional to the product of the number of grid points and the numbe
time steps. The implementation of efficient preconditioners is significantly simplified sii
the mapping of the water volume and the domain imbedding technique allow the solu
domain for the Laplace equation to be, e.g., a box with a uniform grid.

In the following sections, we first outline the mathematical model for nonlinear wa
surface waves. Then we present a brief discussion of the choice of finite element met
versus boundary element methods for solving the Laplace equation. This discussion f
the background for deriving a modified system of governing equations. Thereafter a |
efficient method for solving the Laplace equation is described. Based on this, we formt
the numerical algorithm for the dynamic problem. Finally, we evaluate the performanc
the algorithm in several two- and three-dimensional applications. The associated simul
programs have been developed using Diffpack [9, 19].

2. THE GOVERNING EQUATIONS

2.1. Outline of the Mathematical Model

Let (X, Y, 2) be the spatial coordinates and ietenote time. We make the standard as
sumption that the wave induced velocity field is divergence free and irrotational. Introduc



546 CAIET AL.

the velocity potentiap (X, Y, z, t), the governing partial differential equation, arising fron
mass conservation in the water volume, is the Laplace equefior= 0. Besides the velo-
city potential, the free surface = (X, y, t) is the other primary unknown of the prob-
lem. The motion of the free surface is governed by the kinematic and dynamic boun
conditions:

n + exnx + eyny — 9z = 0, (1)
1
ot S(eF+o5+e5) +an=0. (3

Hereg is the gravitational acceleration in the negafivdirection, and subscripts denote
derivatives, for exampley, = dn/at. Equation (1) guarantees that there is no mass trans
through the free surface, while Eq. (2) is a force (pressure) balance at the surface. At
boundaries, the normal derivativeg@wmust equal the normal velocity of the boundary. How
ever, in this paper we will study problems with fixed solid boundaries, whgyén = 0.
We refer to Whitham [22] for a derivation of the equations above.

The water volumes of interest in this paper can be written on the form

Q) ={(X.¥.2) | (X, ) € Qy\2s, —H <Z < n(X, ¥, 1)}. ®3)

Here,Qxy is a two-dimensional computational domain containing a solid obstacledyith
cross sectioni2s. Both Q57 and Qs are stationary with respect to time. An example of
solution domain of this type is shown later in Fig. 11. To avoid the influence of radiati
conditions on the evaluation of the proposed numerical algorithm, we will restrict
numerical examples to a water tank such that the boundarieg;@fre solid. For simplicity,
the depthH is considered as constant, but the treatment of a space-time dependent ¢
function will follow directly from our treatment of the free surface.

2.2. Boundary Elements versus Finite Elements

In modelling water waves, most numerical methods are based on a certain ope
splitting. At a specific time level, Egs. (1) and (2) are solved at the two-dimensional f
surface to determine the new shape of the three-dimensional water velyten the
Laplace equatioiv?¢ = 0 is solved inQ. Of course, the most CPU-time consuming ster
are the discretization of the time dependent solution dormaiand the solution of the
Laplace equation therein.

There is a strong tradition in marine hydrodynamics for solving the Laplace equatior
boundary element type techniques instead of a straightforward finite element discretiz:
in the volume. The reason for this is that the number of unknowns in the resulting lin
system is reduced. However, modern preconditioning techniques for elliptic boundary v
problems have led us to reconsider this point of view. For a general description an
analysis of boundary element methods and finite element methods we refer to the boo
e.g., Becker [2] and Ciarlet [8].

Let us give a very heuristic comparison between FEM and BEM for solving the Lapl:
equation inQ2. For simplicity, we consider the case of a square domain without any inter
obstacle and an associated uniform grid witirid points in each direction. Thus the numbe
of unknowns isn® for FEM andn®-! for BEM, whered =2, 3 is the number of space
dimensions. The system matrix associated with the finite element discretization is sp
Using linear elements, we get five nonzero diagonals in 2D and seven in 3D. Higher o
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elements introduce more nonzero diagonals, but it is always a fixed number independe
n. On the other hand, the matrices arising from a boundary element discretization are d

The matrix-systems can be solved by both direct methods and iterative methods
the problems under consideration, iterative methods are known to be much faster s
assume that both the BEM and the FEM systems are solved by a conjugate-grac
type iterative method. It is well known that BEM matrices are well conditioned, hence
iterative method is expected to converge in a finite number of iteratipiredependent of
n. Since the computational cost of one matrix-vector multiplication for BEM is the squi
of the number of unknowns, the computational cost of solving the BEM-system iterativ
is @(n?) in 2D and®@(n*) in 3D.

The cost of one matrix-vector multiplication in FEM@3Ng) whereNg is the number
of nonzeros of the FEM-matrix (recall th&ts is of the same order as the number o
unknowns). Without any preconditioning, the FEM-matrix is well known to have a spec
condition numbekg ~ O(h~?), whereh~ 1/n denotes the global mesh size. Since th
number of CG iterations is of ordé}(/cé/z) (see Axelsson [1]), this leads (n) iterations
and a computational cost 61(n®) for 2D problems and)(n*) for 3D problems.

Forthe last 20 years there has been a lot of research activity connected to the develoj
of preconditioners for elliptic boundary value problems. A recent survey of this field
provided by Bruaset [5]. One particularly simple scheme is known as modified incomp
LU-factorization (MILU). Itwas introduced by Gustafsson [13] and will be further discuss
below. This preconditioning technique reduces the spectral condition number of the F
matrix to O (h~1), thus requiring?(n*/?) iterations. This leads to a computational cost ¢
O(n?%®) in 2D and of@(n®®) in 3D.

However, it is also possible to derive preconditioners which result in uniform condit
numbers. Hence, the number of CG iterations needed to solve the discretized La
equation becomes independennofVith these optimal preconditioners it only requires «
computational cost aP(n?) in 2D and®(n®) in 3D for FEM. A summary of these heuristic
arguments is given in Table 1.

Based on these observations, we find it interesting to consider the application of FEN
solving the Laplace equation in the three-dimensional water volume using a preconditic
conjugate gradient (PCG) method.

2.3. Transformation of the Physical Domain

As discussed above, the solution of the Laplace equation is the most time-consul
part when modelling fully nonlinear water waves. Notice that the Laplace equation n

TABLE 1
Heuristic Estimates of the Number of Iterations and of the Computational Cost
for BEM and for FEM

FEM BEM
Discretiz_a_tior_1 method MILU Opt. precond.
Preconditioning
Space dimensions 2D 3D 2D 3D 2D 3D
Number of unknowns On?) o(n®) O(n?) on3) O(n) O(n?)
Iteration number O(n*?) O(n¥?) O O 01 01

Computational cost O(n?%) O(n3%) OMm?) Omnd) om?) omh
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be solved at each time step in a time dependent geomﬁitr)yas defined in Eq. (3). Our
approach to an efficient solution of the Laplace equation is founded on two basic deme

(1) We do not want to regrid the water volureeat each time step since this is a
complicated, time-consuming process.

(2) We wantto solve the linear system arising from the finite element discretizatior
a preconditioned conjugate gradient (PCG) algorithm where the associated linear ope
is uniformly well conditioned with respect to the mesh partition paranreter

The first demand can be met by introducing a simple transformation of the water volu
in which we mapX2 onto a stationary domai2 on the form

Q=1{(X,¥,2) | (X,y) € Quy\Qs, —H <2< 0}

with boundaries fixed in time. In this way we avoid the regridding process at each time s
The transformatiomw : (X, y, Z) — (X, Y, Z) can be defined as

X=X, y=Y, z:(ZﬁH—l>H, 4)

wheref (X, y,t) = n(x,y,t) + H and f (X, y, t) > 0. However, the case df = 0 means
a dry spot in the physical domain and will not be considered further. Hence, we assume
In(X, Y, 1t)| < H throughout this paper. Note also that thye-coordinates are the same ac
the xy-coordinates in the transformation; we thus drop notatiansand usex, y instead
throughout the remaining text.

The Jacobian matrid associated with the transformatiprhas the form

1 0 0
IX,y.zt) = C@tHf  @tHfy H ©
f f f

Hence, the transformation is well defined if f is positive. Introducing the transforma-
tion p in the Laplace equation, the solution domain becomes much simpler at the co:
a time-dependent, variable coefficient in the governing partial differential equation. -
transformed equation reads

V-(KVp)=0 inQ, (6)

where the coefficient matrik (x, y, z, t) is given by

1
Kix,y,zt) = — JJ7

detJ
f 0 —(z+ H)fx
zi 0 f —(z+H)fy @
H HZ2+ (z+ H)?(f2+ 12) |

—(z+H)f —(z+ H)fy

f

Normally, we consider the two-dimensional computational donsain on the form
Qyy = [0, L1] x [0, L2]. Hence, the new three-dimensional solution donfaimas a simple
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box shape. However, complicated geometries occur when the water volume conta
solid obstacle. This may demand sophisticated gridding techniques. In these situatic
domain imbedding approach (also referred to as the method of fictitious domains) ma
useful in overcoming this difficulty. Roughly speaking, the functois extended t&2s by
putting it equal to a small valueinside the solid obstacle. Hererepresents a nonphysical
“permeability” and acts as a regularization parameter. More precisely, we rdpliadhe
governing partial differential equation (6) 6§, where
el, (X,y) € Qs,
Ke= {K, (X, Y) € Q2xy\2s. (8)

Here,l denotes the identity matrix.

It has been shown, see [18], that the errors in the discrete finite element approximatio
¢ andVg are of ordek in proper norms regardless of the mesh size, as long as the elen
boundaries coincide with the boundaries of the obstacle. To treat complicated geome
accurately, one can hence choessmall enough so that the errors due to “water flow
through the obstacle are negligible in comparison with other discretization errors.

Introducing domain imbedding, the governing partial differential equation can always
solved in the simple box-shaped computational domain

Q =[0, L4] x [0, Ly] x [—H, 0] 9)

Hence we can choose, e.g., a uniform partitio2oMore important, it makes the imple-
mentation of efficient preconditioners easy. This will be addressed in Section 3.

2.4. The System of Governing Equations

We will now list the complete initial-boundary value problem to be solved in this paper
is convenient to introduce two new variables; the potential and-ttemponent of particle
velocity evaluated at the surfaggsee Zakharov [23]),

FX Yy, D) =X y,n(X Yy, 1), 1), (10)
G(Xa Y, t) = QOZ(X, Y, 77(Xs Y, t)v t) (11)

Moreover, we split the boundary 6f into three non-overlapping componeni§2=1I"; U

', UT'3. Here,I'; represents the solid wallg:= 0, L,y =0, L, z= —H; I' is the free
surfacez = 0 outside the obstaclgx, y) ¢ Qs), andI'z is the remaining part (the free
surface “inside” the obstacle). With these new variables, we can write the complete sy
of partial differential equations and boundary conditions on the form

V- (KVp) =0 inQ, (12)
dg

— =0 onl'y, 13

o ) (13)

o=F onTy, (14)
dg

— =0 onT, 15

- : (15)

e+ Fxnc+ Fyny — (1405 +15)G=0  only, (16)
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1 1
Ft+§(FX2+ Ff)—§(1+n§+n§)ez+gn=o onTy, (17)
n(x,y,00=n°  only, (18)
F(X,y,00 =0 onry, (19)
G(x,y,00=0 onl,. (20)

The latter three conditions reflect that the surface is initially at rest with a prescribed st
Z=1n°(x, y). A similar formulation has been used by Mehlum in [17].

3. PRECONDITIONING

3.1. Basic Theory

Itis readily seen that the system (12)—(15) is a standard, variable-coefficient Laplace-
equation with Neumann and Dirichlet boundary conditions. Its finite element formulat
is straightforward, cf., e.g., [15], and gives rise to a linear system on the form

A€ = b, (21)

whereAis a sparse, symmetric, and positive definite matrix gisd vector of the unknown
¢ values at the grid points @@. Such linear systems can be efficiently solved by the PC
method, see, e.g., Axelsson and Barker [1]. That is, instead of solving (21) explicitly,
solve the equivalent system

M~IA¢E = M1, (22)

whereM is also a sparse, symmetric, and positive definite matrix. The preconditibnel
should be constructed such thdtis spectrally close té and such that problems on the
form Mx = g can be efficiently solved.

As mentioned above, over the last 20 years, preconditioners for the efficient nume
solution of discretized second order elliptic problems have been extensively studied.
most popular methods are based on domain decomposition techniques, multigrid met
and incomplete factorizations, see, e.g., Hackbusch[14] and Bruaset [5]. In this paper we
consider so-called optimal preconditioners for systems on the form (21). It is proved in
that a very small domain imbedding parameteloes not destroy the optimal convergenc
property of the PCG method. In fact, it is shown that the number of CG-iterations is boun
independently o¢ and the mesh parameter

Recall that we have mapped the dynamic, physical dongxin onto a stationary
computational domairf2. Hence, we get an elliptic boundary value problem posed
a rectangular domain in 2D or a box in 3D. In this case, we can use fast solvers (emplo
FFT), or multigrid methods for the Laplacian as preconditioners for the system (21),
e.g., Greenbaum [12]. That is, the preconditioves defined as the matrix associated witt
a finite element discretization of the problem

V3 =0 ingQ,

9
%:OOnrlurg, ¥ =0onTy, (23)
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where we use the same discretization method and the same element type as for the <
(12)—(15). In this case, it is well known that the number of CG-iterations needed to s¢
(22) is bounded independently of the mesh partition paramebdote that only the operator
associated with the boundary value problemois used, not the solutiof)y = 0).

Let &, be themth approximation to the solutiog of (21) from the preconditioned
CG-method applied to (22). Then the relative error satisfies

1€ — €mlla
1€ —Eolla — °

in at most
. 1 . 2
m ~ mt(E\/K(M A) In;) (24)

CG-iterations, see, e.g., Axelsson [1]. Here; 0 is the error levely (M~1A) denotes the
spectral condition number ™ 1A, and| - || denotes the standard energy norm associat
with the matrixA. SinceM is the matrix associated with a finite element discretization
the problem (23), it is well known that the spectral condition numbén ofA satisfies

ma)Qx,y,z) ()hmax(K(Xa y’ Z, t)))
min(x,y,z)()\min(K(X» Y, Z, t))) '

K(M™A) <

see, e.g., [3] and references therein. H&ré& the matrix defined in (7) anthhax andimin

denote respectively the maximum and minimum eigenvalu¢ aff a specific time level.
For simplicity we consider this estimate closer in the 2D case(kgz) € Q, =0, L] x

[—H, 0]. The generalization to 3D is straightforward. We find for 2D cases that

maXyx. ) (I + /1% —4)

K(M™1A) < ,
( ) = Min 2 (r — /12 —4)
where
f o H  @+H? P
= 4 4o XD 2
r(x,zt) ot T (25)

and f(x,t) = n(x,t) + H. Next, if rmax = maxx.» r (X, z, t) = maxyx r (x, 0, t) denotes
the maximum value af in 2, at a specific time level then

-1 rmax+ rr%]ax_4
Kk(M™IA) < v . (26)
Fmax — /T 2ax — 4

It is readily seen that(x, z,t) > 2 and sincén(x, t)| < H it can be shown that

H 2
+ min { (max| fxD=.  (27)

(maxx f H min, f H >
I'max < Max

H +maxxf’ H +minxf
Hence, if| f«| is bounded then it follows from (24)—(27) that the number of CG-iteratiol

needed to solve the preconditioned system associated with a 2D case is bounded inc
dently ofn. Very steep waves, e.g., close to breaking, will therefore lead to an increas
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the number of iterations in the present method. But the number of iterations still rem:
independent of the number of unknowns.
In order to apply the preconditiondvl we must be able to solve systems on the form

Mx =g (28)

efficiently. It is well known that problems on this form can be solve@i{N) operations,
where N denotes the number of unknowns, using domain decomposition technique
multigrid methods.

However, applying the domain transformation technique, described in the previous
tion, the problem (23) is posed on a rectangular domain in 2D and a box in 3D. For s
problems FFT-based fast solvers for the efficient numerical solution of the discreti
Laplacian (28) have been thoroughly studied by several authors, see, e.g., [6, 10]. In
eral, these solution methods requi?éN log N) arithmetic operations. Moreover, in [7] we
proved that the number of CG-iterations needed to solve (22) is bounded independen
the domain imbedding parameter

For later use in the paper, we introduce the abbreviations PCG-FFT and PCG-MG fo
conjugate gradient method which uses FFT-based fast solvers or multigrid, respective
the preconditioner. PCG-MILU will indicate the use of the MILU preconditioner [5, 13].

3.2. Numerical Experiments; Simplified Cases

In this section we present some examples illustrating the behavior of the domain tr
formation technique and the FFT-based preconditioner described above. Simulations'|
on the full model (12)—(20) in 2D and 3D will be presented in a later section.

We solve a typical variable-coefficient Laplace-type problem on the form (12)—(15) t
arises at each time step in the numerical algorithm for the full wave problem. For simplic
we restrict our attention to a two-dimensional computational domaim][& [—7, O] and
prescribe three stationary water surface functions:

n(xX) = 0.2x%(w — x)?,
n2(X) = =0.7|x — /2],
n3(X) = —0.5x?(m — X) sin(x).

The first and third surface funtions correspond to smooth waves, whegrbas a discon-
tinuous derivative (see Fig. 1). We want to study the influence of the smoothness of the
face on the performance of the PCG method. We solve Eq. (12pwijthn = Oonx = 0, =
andz = —H, while atz = 0 we use the Dirichlet condition(x, 0) = ¢®©(x, z(x, 0)),
where

_ 1. . - = .
¢©(x,2(x, 2) = > [sin(e~**2™ cosx) cosh{e™**?" sinx)
+ sin(e? cosx) coshe sinx)] .

One can then verify thap(x, z2) = ¢©(x, Z(X, 2)) is the exact solution of the problem.
With this exact solution we can easily investigate the accuracy of the proposed nume
strategies.

3.2.1.Convergence of the Numerical Solutiongirst we investigate whether the con-
vergence rate of the finite element method is affected by the domain transformation o
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FIG. 1. Three stationary water surface functions; the dashed-dotted, dashed, and solid lines represent
andns, respectively.

smoothness of the surface. The errors of the finite element solutions are measured
discretel - andL,-norms, defined by

.....

whereg is a discrete finite element function on a uniformly partitioned grid, gnd =
1,..., N, denote the nodal values. Assuming an error funcikgh) = Ch*, we can esti-
mate the constan@andx from computer experiments. In the following, onlys estimated
by comparison of two subsequent experiments. Gaussian elimination is used as the eqt
solver, and linear elements (triangles with three nodes) are used for the discretization
numerical results are shown in Table 2, where finite element solutions are denaged t
Clearly, second order convergence is obtained for all test problems. Hence, it seem:
the expected order of the error is preserved by the domain transformation technique.

3.2.2.Numerical Results for the PCG MethodNow we want to study the number of
CG-iterations needed to solve the linear system associated with the two-dimensiona
problem described above. A vecigy with zeros is used as the initial guess for the CC
iterations, and as a stopping criterion we have uged A&, ||2/IIb—A&yll2 < o, whereo is
the prescribed accuracy. We denotentigyandmy, the number of iterations used by the op.
timal PCG-FFT method and the standard PCG-MILU method, respectively. Tables
list these numbers for different sizes of the discrete test problem associated with
three stationary water surface functions. We have also estimatedn assumed relation
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TABLE 2

Numerical Results for the Domain Transformation Technique for Solving the 2D Laplace
Equation with Prescribed Surface Shapes);, 12, and 3

lle® — @llaco le® — @lla2
n h _ o _ " o
le©ll a0 le®©lla.2
n1(X) /20 2.19495e-02 1.46557e-02
" /40 4.64268e-03 2.241 3.95751e-03 1.889
" /60 2.07548e-03 1.986 1.81234e-03 1.926
" /80 1.16071e-03 2.020 1.03679e-03 1.941
72(X) /20 6.78302e-04 6.55385e-04
" /40 1.67616e-04 2.017 1.66366e-04 1.978
" /60 7.57982e-05 1.957 7.43733e-05 1.986
" /80 4.35374e-05 1.927 4.20004e-05 1.986
n3(X) /20 8.53511e-03 1.16352e-02
" /40 2.19907e-03 1.957 3.07286e-03 1.921
" /60 9.85738e-04 1.979 1.38888e-03 1.959
" /80 5.55442e-04 1.994 7.87622e-04 1.972
TABLE 3
The Number of CG-Iterations Needed to Solve Our Model Problem
with Surface Elevationn =n,
o =1.0e-04 o =1.0e-06 o =1.0e-08 o =1.0e-10
N Mo My o Mo My o Mo My o Mo my o
32 8 15 13 20 19 25 24 31
6% 8 20 0212 13 28 0.248 19 36 0.269 24 45  0.275
129 7 26 0191 13 39 0242 18 53 0282 24 66  0.279
257 7 35 0.216 12 55 0.249 18 74 0.242 23 95 0.264
51% 7 46 0.198 11 76 0.234 17 105 0.253 23 136 0.260
102% 8 60 0192 11 104 0.227 17 149 0253 22 195 0.260
TABLE 4
The Number of CG-Iterations Needed to Solve Our Model Problem
with Surface Elevationn =7,
o =1.0e-04 o =1.0e-06 o =1.0e-08 o =1.0e-10
N mo my o mo My o mo my o mo my
3% 8 13 12 18 16 23 21 28
65 7 16 0.153 12 25 0.242 17 32 0.244 22 40 0.263
129 7 22 0232 12 33 0203 17 45 0.249 22 57 0.258
257 7 28 0231 12 46 0241 17 64 0256 22 83  0.273
513 7 35 0.161 12 63 0.227 17 90 0.247 22 118 0.255
102% 7 46 0.197 12 87 0233 17 129 0260 22 174 0.281
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TABLE 5
The Number of CG-lterations Needed to Solve Our Model Problem
with Surface Elevationn = n3

o =1.0e-04 o =1.0e-06 o =1.0e-08 o =1.0e-10
N Mo My o Mo My o Mo My o Mo My o
3F 17 9 29 13 41 17 52 23

65 18 11 0.148 31 19 0.280 46 25 0.285 60 33 0.266
129 18 15 0.226 32 25 0.200 48 35 0.245 66 46 0.242
257 16 19 0.172 31 36 0.265 48 52 0.287 67 67 0.273
513 16 25 0.199 29 53 0.280 47 7 0.284 66 99 0.282

1028 16 32 0.178 29 74 0.241 45 112 0.271 64 153 0.315

betweermy and the number of unknowms, my; ~ O(N%), by comparing two subsequent
experiments.

From Tables 3-5 we observe that the preconditioner based on (23) is preferable to b
preconditioning, because the number of CG-iteratiopsieeded for achieving convergence
isindependentdi, whereasny grows withN at the ratex ~ 0.25. However, the number of
CG-iterations needed by the PCG-FFT method increases as the waves get steeper, cf. T

4. THE DYNAMIC PROBLEM

The previous section dealt with the numerical solution of the Laplace equation at a spe
time level. Now we describe the method for solving the evolution equations dod F,
i.e., Egs. (16) and (17). Inside the time interval TQ, the numerical solution is sought at
a finite number of time levelg such that 0=ty < t; < t,... < ts = T. We introduce
Aty such thatAt, = tx — ty_3. When the computational domain is of rectangular shape,
is convenient to solve (16)—(20) by a finite difference method. The details of this met
will now be listed for the two-dimensional case, with straightforward extensions to the ft
three-dimensional problem. Let the computational domaiiJ0< [—H, O] be partitioned
into (ny — 1) and(n; — 1) subintervals in thex- and z-directions, respectively. We want
to compute the approximations @fx, z, t) andn(x, t) together withF (x, t) andG(x, t)
at discrete time instants at points in the dynamic, physical domain which are mapped-
the corresponding grid points in the computational domain,

nE A~ (X, ), (i.k) € [1.n] > [0, 5],
FK~ F(X, t), (i, k) e [1,n] x [0, 9,
Gk ~ G(x, t), (.} € [1,nd <09,
of i ~o(x. 2. %),  (.].k e [L.n] x[1,n] x[0, 8],
Xl_nx—lL’ Zl’l_nz_l(nl+H) H

4.1. Discretization of Surface Conditions

For Egs. (16) and (17), we apply centered differences of the Leap-frog type in time. U:
a discrete spatial difference operaf®to be defined below, the discrete surface conditior
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can be written

P = o (Atga + At [DFFDRE — (14 (D)%) GY],
At + At
- B A (RN (14 (Daf)?) (1) + 20,

fork=1,..., S Here,Dn =~ nx(X, t) andDFk Fx(Xi, ). The valuesnI andF1 are
found using the initial conditions (19)—(20) and a simple first-order difference approximat

Fk+l Fk 1

i —nf
Aty

Fl—FO
IAtl L= —gn’ = Fl = —Atgnl.

The algorithm for a two-dimensional fully nonlinear wave simulation can then be writt
as follows.

=0= it =n,

(1) Evaluate the actual initial conditiori < i < ny):n° =75 (x.) FO=G?=0.
(2) Whilety < T carry out the following steps fdc =0, 1, .. .:
(@) ComputeDnk andDFX as the approximations af(x;, t) and Fy(xi, t¢) for
2<i<ngy—1.
(b) If (k = 0) then sety? = n°,1 <i < ny, else compute!
relation(1 <i < ny):

k+1 according to the

P = gt = (Atgys + At [DFFDyE — (14 (Dn})?)GY].

(c) If (k= 0) then setF! = —At;gn°, 1 <i < ny, else computd*** according
to the relation(1 < i < ny):
A Al1 + Al
2
(d) Solve the Laplace equation in the water volume by the proposed domain tr:

formation technigue and the domain imbedding method.
(e) ComputeGKtt (1 <i <ny) by

(DR = (14 (D)) (GF)° + 20n].

G = Sy (H8 = 4+ ol
Remarks. (1) The proposed algorithm is explicit. Formally, the order of accuracy

time isO(At?) for constantAt, even though the order of the first ste@gAt). The spatial
order of the scheme is dictated by the choicé®of

(2) At eachtime step, during the solution of the Laplace equation, the velocity poter
from the previous time step is used as the start vector for the PCG method.

(3) The Neumann boundary conditions at the solid boundarie® andx = L imply
thatDnk = Dyk = DFf = DFX =0.

(4) Dn¥ andDF¥ (2 < i < ny — 1) should be the approximation of the first-ordel
derivatives with respect o on interior grid points at the free surface. The simplest way
calculating them is by the second order centered finite difference, like

DFf = (FX, — FX,)/2Ax, (29)

with the exception of grid points located at the boundary of the obstacle. HoweRer=f()



FINITE ELEMENT METHOD AND WATER WAVES 557

and the computational domain is of rectangular shape, cubic spline interpolations of dis
F¥ andnk can be used to calculaf®, andDFX. Numerical experiments indicate that bott
accuracy and stability can be enhanced compared with the centered difference (29). |
way, we may achieve better accuracy at a negligible cost since the matrices associate
the spline interpolations can be computed in a factored form once and for all. It is of co
also possible to use the finite element representation to corfipute

(5) G can be computed by the simple form

n,—1
G!‘ = (ﬁlszH) (€0ik,nz - (pik,nz—l)’

but in order to achieve second-order accuracy, we employ the formula given in step 2(
the numerical algorithm.

(6) The numerical algorithm is only conditionally stable. In the fully nonlinear cas
it is difficult to derive a theoretical stability condition, amd must be determined on an
experimental basis. In simpler problems a constanis sufficient, while in more chal-
lenging problems we apply a varialbiet, where the number of PCG iterations is used &
an indicator whethent is too large or too small. If the number of iterations is below
lower critical limit, say two, the size okt is doubled, whileAt is halved if the number of
iterations is larger than an upper critical limit, say ten. Smoothing‘adindz,* by standard
algorithms can also be necessary.

5. NUMERICAL EXPERIMENTS; 2D WAVES

The proposed numerical algorithm is first evaluated in cases of two-dimensional w
motion. The length of the domain in thedirection isL. Linear elements are used in the
finite element discretization. Cubic spline interpolations are applied in the calculatiot
Dnik andDFik. As stopping criterion for the PCG-FFT method we emg|oy|» < 1078,
wherer,, = b — A&, is the residual in iteration numben. This stopping criterion has
shown to be appropriate for the current and later numerical experiments.

5.1. Shallow Water

Consider long waves in shallow water with the parameters

729 2/x—L\* 1
i s - () () -3

Due to the absence of an analytical solution for the current example, we compare
numerical solution with the results of a spline method developed by Mehlum [17]. 1
spline computations which define a reference solution were performed on a very fine
We study the convergence of the numerical solution with respect to this reference soll
under refinement of the grid. In particular, the surface elevajtignt) and velocity potential
at the surfacd-(x, t) are considered. Numerical solutions obtained by the new algoritt
are denoted by and F, while solutions by Mehlum’s spline method are denoted;§y
andF® . Both the discreté ,-norm and the discrete;-norm are utilized, where

1 18
- )2 I .
= JEﬂ(gl) , lalla,1= - JEZI 19l

with g being a discrete function with function valugs j =1,...,n.

I9lla,2 =
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TABLE 6
The 2D Shallow Water Experiment; a Comparison ofp and F Computed by the New
Algorithm and Mehlum’s Spline Method at t = 5

N At 17— 7llas 17 — 7l IF — FOllaa IF — F9as
17911s.1 179112 IF® a1 IF©1ls
9x5 0.50 1.181e-01 1.351e-01 5.087e-02 5.660e-02
17x9 0.25 2.526e-02 3.082e-02 1.223e-02 1.315e-02
33x 17 0.10 7.884e-03 9.170e-03 3.163e-03 3.440e-03
65x 33 0.05 2.109e-03 2.395e-03 8.134e-04 8.836e-04
129x 65 0.025 5.704e-04 6.459e-04 2.142e-04 2.352e-04

For moderate sizes of constant time stgp95< At <0.25), the number of PCG
iterations required for solving the corresponding Laplace equation is at most 5 reg
less of the grid size. The number decreases for smaller time steps. From Table 6 we ob
rapid convergence of the solution with our new algorithm towards the reference solu
computed by Mehlum’s spline method. In fact, errors less than the line thickness in the
are easily achieved even on a coarse grid, see Figs. 2 and 3.

5.2. Deep Water

We now consider waves whose typical wavelength is much less than the depth o
water tank. In the experiments, the parameters are

2
L = 160, H=70 »n°x)=65 cos(%x) +55 cos(Tnx).

Again we note that the solution computed by the proposed algorithm converges tow
the solution obtained by Mehlums spline method, cf. Table 7. The solution of the Lapl
equation at each time level requires 4—6 iterations of the PCG-FFT method independe
the number of spatial grid points.

elevation

-0.4¢

FIG. 2. The 2D shallow water experiment; surface elevatioh &t 5, applyingN = 9 x 5 andAt = 0.5.
The solid line is the result from the new algorithm and the dashed line is the result from Mehlum'’s spline met
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elevation
1

0.8

0.6

2 40 0 80 100
-0.2

-0.4

FIG. 3. The 2D shallow water experiment; surface elevation-at5, applyingN = 17 x 9 andAt = 0.25.
The solid line is the result from the new algorithm and the dashed line is the result from Mehlum’s spline met

5.3. Submerged Obstacle in Intermediate Water

In this third, two-dimensional, test problem we consider waves in water of intermedi
depth. The solution domain and the initial conditions are the same as in the deep v
experiment studied above, except for the depth, which is 40 in this caseH(i.€.,40).

In order to make the problem more challenging, we consider a water tank containi
box-shaped obstacle. This obstacle is submerged with its positicn Bt € [90, 100] x
[—30, —15]. Figure 4 sketches the submerged obstacle and the initial surface shape.

We solve this problem by applying the domain imbedding procedure discussed in ¢
section 2.3. More precisely, the obstacle is represented by a negligible artificial “per
ability,” putting e = 10~ in (8). Figure 5 shows the water surface elevation at tirae}.8
andt =21.2 s. The influence of the obstacle on the wave motion can easily be obser
These numerical results were confirmed by applying different mesh sizes and obse
convergence of the method under mesh refinements.

For this test problem, we also calculate the kinetic en&gwynd the potential energy
Ep due to the wave motion, where

L n L
Ekz/ / P\l dx &z, EpE/ P90+ H)2dx— POLH2. (30)
x=0Jz=—H 2 X 2 2

TABLE 7
The 2D Deep Water Experiment; a Comparison ofp and F Computed by the New Algorithm
and Mehlum’s Spline Method att = 10

N At it = 1%llas it = 10la.2 IF = FOllaa IF = FOllaz
170 a.a 12 IFS s IF a2
9x11 0.50 9.607e-02 7.862e-02 5.269e-02 4.969e-02
17x21 0.25 2.578e-02 2.233e-02 1.627e-02 1.493e-02
33x 41 0.10 7.436e-03 6.817e-03 5.677e-03 5.186e-03

65 x 81 0.05 2.601e-03 2.485e-03 2.981e-03 2.917e-03
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—_40 1 1 I L 2 1 1
0 20 40 60 80 100 120 140 160
X

FIG. 4. The figure shows the initial shape of the water surface for the problem studied in Subsection 5.3.
rectangle represents a submerged obstacle.

The constanp is the water density. The total ener§y= Ex + E,; is also studied as a
function of time. We depict in Fig. 6 the computational results obtained on a2%B
mesh withAt = 1/80. The figure shows that the total energy is nearly constant. Tabl
confirms that the maximum deviation of the computed total energy from the exact valt
reduced under mesh refinements.

6. NUMERICAL EXPERIMENTS; 3D WAVES

6.1. The Wave Motion in a Water Tank

We consider waves in a 3D water tank without any internal obstacle. The param
for defining the three-dimensional computational domainlare- L, =80 andH =50,

TABLE 8
Maximum Deviation of the Computed Total Energy, Obtained on Different Meshes,
from the Exact Value for the Test Problem Studied in Subsection 5.3

Mesh 33x 17 65x 33 129x 65 257x 129

At 1/10 1/20 1/40 1/80
Max deviation 6.45% 3.57% 1.39% 0.56%
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10 -

0 20 40 60 80 100 120 140 160

30} 4

-35} -

—40 1 1 1 1 1 1 ]
0 20 40 60 80 100 120 140 160
X

FIG. 5. The surface elevation at time=4.8 andt=212 seconds for the test problem studied in
Subsection 5.3. The and dotted “lines” represent numerical results obtained or 33 and 65x 33 meshes
by applying time stepat = 1/10 s andAt = 1/20 s, respectively. By puttingit = 1/40 s and applying a
129x 65 mesh we computed the results illustrated by the dashed lines. Finally, the solid line represents the r
computed on a 25% 129 mesh withAt = 1/80 s.
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FIG. 6. The figure shows, for the test problem studied in Subsection 5.3, the kinetic daefthe dashed-

dotted line), the potential enerdgy, (the dashed line), and the total enefgy- E,+ E,, (the solid line) as functions
of time. The data are obtained from a 267229 mesh wittAt = 1/80 s.

whereas the initial condition is

n°(x, y) = (—0.9 cos(nx) + cos(znx)> (1 -0.9 cos(”) + cos<2”y> ) )
La L1 L

2 Lo

Trilinear elements are used in the finite element discretization. Again we compare
numerical solution from the new algorithm with the solution computed by Mehlum’s spli
method on a very fine grid. The information about the grid sizes and the errors can be fc

in Table 9. The PCG-FFT method converges within 5-7 iterations at each time step, u
the same stopping criterion as in the 2D experiments.

TABLE 9

The Wave Motion in a Water Tank; a Comparison of 7 and F Computed by the New
Algorithm and Mehlum'’s Spline Method at Time t = 4

N At I = 7% lla.a i = 1lla.2 IF = FOllas IF = FOllaz
m® a2 179 1a.2 IF© a2 IF®a2
5x 5x 6 0.50 2.626e-01 2.458e-01 3.427e-01 3.872e-01
9x 9x11 0.25 9.761e-02 8.744e-02 1.027e-01 1.226e-01
17x17x 21 0.10 3.409e-02 2.998e-02 3.221e-02 4.361e-02
33x33x 41 0.05 1.100e-02 9.561e-03 1.256e-02 2.696e-02
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y

Qay o

FIG. 7. Top view of a water tank containing an obstagle

6.2. A Water Tank with an Obstacle Submerged under Water

A 2D cross section of the geometry of the 3D water tank considered in this experime
depicted in Fig. 7. More preciseli; =24, L, =12, H =6, andQs=[18, 21] x [0, 3] x
[—6, —3] represents a box-shaped obstacle located at the bottom of the tank.

The function,® describing the water surface at tirme= 0 is given by

0 X 2T X
n-(X,y) =cos{ — | +cos{ — |.
Ly L,

Figures 8 and 9 show the numerical results obtained on various meshes by app
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FIG. 8. Surface elevation at different time levels; {a30's, (b)t =3.6 s, (C)t =6.9 s, (d)t =10.8 s. These
results were computed on a 6533 x 81 mesh with time stept =1/40 s.
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surface elevation

surface elevation
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FIG. 9. Surface elevation as a function of tihat specific locations. The plots show the elevation at (18, 3
and (21, 3), respectively. Dotted lines represent solutions obtained or 8 £21 grid withAt =1/10 s; dashed
lines represent solutions obtained on a3B7 x 41 grid with At =1/20 s; while solid lines are solutions from a
65 x 33 x 81 grid withAt=1/40s.
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FIG. 10. The figure shows for the test problem studied in Subsection 6.2 the kinetic efe(tye dashed-
dotted line), the potential enerdy, (the dashed line), and the total enefyy- E, + E, (the solid line) as functions
of time. The data are obtained from a 833 x 81 mesh withAt = 1/40 s.

suitable time steps. As in Subsection 5.3 we apply the domain imbedding procedure, pL
€ = 10712, Again our algorithm produces reasonable results and convergence of the me
can be observed as the mesh sizes are reduced.

We also study for this test problem the total enekgythe kinetic energyey, and the
potential energ¥ ,, whose definitions are similar to that in (30), as functions of time. Sor
numerical results are depicted in Fig. 10. A slight dip in the total energy arbsdlis
observed. The energy loss might be explained by the fact that the wave is very clos
breaking arounti= 4. Table 10 confirms that the maximum deviation of the computed to
energy from the exact value is reduced under mesh refinements.

6.3. A Water Tank Containing a Surface Piercing Obstacle

We end this presentation by a numerical experiment with water waves in a tank contai
avertical cylinder with square base, i.e., the physical domain is on the form (3pwiiking
a square located close to the center of the tank. The horizontal section of the geometry

TABLE 10
Maximum Deviation of the Computed Total Energy, Obtained on Different Meshes,
from the Exact Value for the Test Problem Studied in Subsection 6.2

Mesh 17x 9x 21 33x 17x 41 65x 33 x 81

At 1/10 1/20 1/40
Max deviation 18.72% 6.84% 2.34%
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FIG. 11. Top view of a water tank containing a square obstéxie

considered is depicted in Fig. 11. This experiment is partially representative for simula
wave forces on a marine installation. However, real-world applications usually involve m
complicated geometries. As mentioned earlier in this paper, a domain imbedding appr
is introduced to treat the internal obstacle. In the general case, the geometry of the ob:s
will not intersect the underlying uniform grid of the computational domain along the g
lines. This is of no principal difficulty, but in the numerical experiments we have decidec
work with a geometry that coincides with the grid lines such that errors from intersecti
are eliminated.
We setQ2 = [0, 200] x [—60, 60] x [—70, 0] and 2s=[125, 150] x [—15, 15]. The

initial condition is on the form

X — 35\ %/ 4(x — 35)
5) — 0.5456 0 35,
220 y) = < 35 )( 3 +> 4 0=x=
—0.54564 otherwise

Because of the symmetry in thedirection, it suffices to solve the water wave system i
half of the original region, i.e., foy > 0. At each time step, Egs. (16) and (17) are solve
in the domair2,,\ Q2s.

The domain imbedding parameter was chosen ta Bel0~12 In this 3D case the
discretized Laplacian (28) was solved by a PCG-MG method. Figure 12 shows that
numerical solutions converge under refinement of the grid. For suitable time steps (
At =0.05, 0.1) we observed that the PCG method gain expected accuracy in less tha
iterations per time step. The number of CG-iterations needed to solve the problem
independent of the domain imbedding parametand the number of spatial grid points.
Further details of the domain imbedding procedure and the influencearf be found in
[7, 18].

7. CONCLUSIONS

We have developed a new numerical scheme for the fully three-dimensional, nonlir
equations modelling water waves. The key feature of the method is that regridding
the computational domain at each time step is avoided, submerged obstacles are
handled, and optimal convergence of the conjugate gradient method is achieved. Num:
comparisons with another carefully tested scheme show that the solutions generated |
two schemes seem to converge towards the same solution as the mesh sizes are redu
more challenging test problems we have indicated convergence of the method as the
is refined. We have also studied time series of the total energy.
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FIG. 12. A 3D water tank containing an obstacle; numerical solutions of the surface elevatior-425
y=225)for0 <t < 17. The solid line is the result from the numerical simulation with= 129 n, = 33, n, =49,
and At =0.05; the dashed line is the result from the numerical simulation wjt& 65, n, =17, n, =25, and
At =0.1; the dash-dotted line is the result from the numerical simulation mjts 33 n,=9,n, =13, and
At=0.1.

The scope of the present paper has been to present the method and indicate its po
for water wave problems. However, there are numerous subjects for further studies
developments. Obstacles of complicated geometrical shape, intersecting the free su
demand more flexible solution methods, like the finite element method, for the equatiol
the surface. Moving bodies are at present beyond the scope of the method. When it cor
verification of our numerical approach, one should conduct a wide range of experiment
which analytical insight is available. Extreme wave conditions, close to the point of break
are of particular interest, and the extensive work of Longuet-Higgins, see, e.g., [16] an
references therein, contains a wealth of approximate, analytical theories. Careful nume
studies of steep waves represent a challenging test on the quality of the numerical app
as well as a tool for investigating the validity of the approximate, hydrodynamical theor
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